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Introduction 
 

The Digital Filters are classified as, IIR or Infinite Impulse Response filters and FIR or 

Finite Impulse Response filters. We have discussed the IIR filters in the previous chapter 

and designed a few, including; the high-pass, low-pass, band-pass and band-stop filters. 

In all, the computation time was fast, as it did not take much to calculate few poles and 

few zeros, but the phase response was generally poor. The initial transient response in IIR 

filters lingers on for a long time. The filters require values from the past output and some 

parts of the initial values are always present in the current output, in theory at least. 

Though, in practice, the fraction grows less and less and eventually reaches 0, but it 

might take a very long time before the floating-point arithmetic precision gives way to 

the accuracy of the calculated numbers. The linear phase response makes the FIR filters 

suitable candidates where the phase information has an important role to play.  

 

We now discuss a different method of obtaining a filter Transfer Function that would 

simply rely upon the values from the past input but not the past outputs, as such; there is 

a uniform phase delay with no distortion. The linear phase is a definite plus, where phase 

delay is critical and this is the Fourier Transform method of designing digital filters. The 

figures and the tables in this chapter are being created with the help of Scilab and Matlab 

scripts and listings of the instructions are provided in Appendix A and B. It is 

recommended that the reader should exercise the instructions in the scripts and gain 

confidence in filter design method by seeing the response interactively. The starting point 

for the FIR filter design is the ideal frequency response. 

 

 

Ideal Filters 
 

The Figure 8.1 is a repeat of the ideal filter response that we have seen before. Notice the 

rectangular shape and the sharp cutoff point that marks the transition from the pass-band 

to the stop-band, there is practically no transition-band and the gain is either 0 or 1. Such 

an ideal filter, if we could achieve somehow, would solve all our filtering problems, but 

in reality (as you will see later), we cannot achieve such perfection. We can only try to 

get closer. In FIR filters, we seek the function that closely matches the ideal response.  

 

Let’s work backward and think; if there was a frequency response, close to the ideal 

response, then there must have been a time based impulse response that generated the 

ideal frequency response. The Fourier Transform of the ideal response would have 

impulse response as its coefficients, and this is basis of Fourier Transform method of 

designing digital filters. Once we know the impulse response, it is easier to formulate a 

filter by performing convolution of the input samples with the impulse response, just as 

we did in the previous section of the IIR filter design. 

 

The objective is to find the coefficients of the Fourier series that generated the ideal 

response (or close to it) and that Fourier series is the desired filter Transfer Function. 
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Let’s chose a low pass filter as shown in the Figure 8.2. (As usual, we will be denoting 

the discrete sampling frequency with the symbol .) Ignoring for a moment the negative 

frequencies, such an ideal frequency response has a well-defined period  to  with 

the pass band region from   to  (where is the normalized sampling frequency of 

radians per sample), center on 0. This is a perfect low pass filter with the cutoff sampling 

frequency of  . The values within the pass band region are 1 and outside this region, 

they are 0, thus forming a function with the values as shown in the following series, 

 

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0       

 

What function has such a rectangular shape? To answer this question, let’s revisit the 

Fourier Transform and produce the coefficients that form the output. 
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**** Insert Figure 8.1 here **** 

Figure 8.1. The ideal frequency response; a) low pass filter, b) high pass filter, c) band 

pass filter, d) band stop filter 

 

 

 

 

 

The Fourier series representation of the ideal frequency 

response 
 

A discontinuous function such as the one in Equation 8.2 may be expressed in terms of its 

Fourier series. The function itself is a periodic function and according to the definition, a 

periodic function )(xf may be represented as an infinite series of sin and cos, whose 

amplitudes (or coefficients) nc may be computed from the function itself, as shown in 

Equation 8.1 and 8.2. (See chapter one for a discussion on extracting the Fourier 

Coefficients.) 
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**** Insert Figure 8.2 here **** 

Figure 8.2. The ideal low pass filter with the cutoff frequency 
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In digital filters, we have a reverse situation, the frequency response )(H is a periodic 

function, and the coefficients are time based. The Discrete Time Fourier Transform of the 

ideal filter Transfer Function of the Figure 8.2 is given in Equation 8.3. 
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The coefficients nh are obtained using the inverse Discrete Time Fourier Transform, 
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Notice; the periodic response function h(n) of Equation 8.4 has a period of  to  , 

but the pass band region from 52c to 52c  (example form Figure 8.1) is 

the only nonzero part, thus, the integral is performed over the pass band region only. In 

our case cc  , substituting the value of the Transfer Function (between c to c ) 

and integrating to obtain the expression for the impulse response h(n) we get, 
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Substituting the value of nh  in Equation 8.3, we get the Transfer Function )(H as 
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The coefficients h(n) of the Equation 8.5 are equivalent of the time based impulse 

response of the ideal frequency response. According to Fourier, we need infinite numbers 

of these coefficients to truly represent the given periodic function. 

 

From a practical standpoint, the number of coefficients is a matter of preference; since, a 

filter with infinite coefficients is inconceivable, we limit ourselves to a finite number N. 
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We will see the consequences of choosing a higher or lower value later in the section, but 

next, we discuss its magnitude response obtained from the filter Transfer Function. 

 

Filter Transfer Function 

 

A Transfer Function of a filter is a function of frequency and it is the Fourier Transform 

of the filter’s impulse response. It is also the ratio of the Transform of the output over the 

Transform of the input. A plot of the Transfer Function vs. frequency variable  shows 

how the output magnitude varies with the different input frequencies. Taking the Fourier 

Transform of the impulse response of an ideal filter, we describe the Transfer Function 

as, 
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The ideal frequency response required infinite summation, but suppose we truncate the 

series to a finite 2N+1 number of terms. The Transfer Function with these reduced 

numbers evaluated is given in Equation 8.6. 
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The Equation 8.6 is simply a polynomial in hn evaluated on the unit circle. (See Appendix 

B Chapter 8, fig8_17 through fig8_21 for the Scilab instructions to perform the 

evaluation), But we could also use the following derivative and obtain a close form 

expression of the filter Transfer Function. 

 

 

 

Substituting the equality, 
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We obtain the following equation for the Transfer Function, 
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There is no imaginary component in the Equation 8.7 that means the filter has linear 

phase response, and the Transfer Function magnitude is simply, 
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Substituting the values for nh computed with the Equation 8.7 we obtain an expression 

for the amplitude response. 

 

With the knowledge of filter coefficients and the design of magnitude response, we are 

ready to implement FIR filters. 

 

 

 

FIR Filter design 
 

We will be discussing the four different kinds of filters, the low-pass, the high-pass, the 

band-pass and the band-stop filters. The frequency response of each is depicted in the 

Figure 8.1. Implementing a filter is simply a matter of finding the right impulse response 

and developing a convolution algorithm that would convolve the input samples with the 

appropriate impulse response, (similar to the IIR filter of Chapter 7). Thus, the quest is to 

obtain the right impulse response. We begin with the implementation of a low-pass filter. 

 

 

Low-pass Filters 
 

A filter is known by its frequency response and is characterized by its cutoff frequencies. 

From implementation point of view, the number of coefficients or filter-taps matter as 

they affect the speed of execution. Though, choosing a large number of filter coefficients 

brings the filter response close to the ideal response but it may slow down the execution. 

In our example filter, we chose 21 coefficients. The cutoff frequency is determined with 

respect to the sampling frequency. If the sampling rate is10k samples per second then a 

cutoff frequency of 2.5khz means 25.0C .   

 

As usual, we will perform convolution of the 21-points (of the impulse response) with the 

kth input samples ][kx  to produce the kth filter output ][ky . (the reason for picking an odd 

number is to have a symmetry on 0).  
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The first step in filter design is to compute the impulse response corresponding to the 

Frequency response. We have already developed an expression for the low-pass filter by 

taking the inverse Fourier Transform as shown in the derivative of Equation 8.5. Ideally, 
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we should evaluate the equation for n to n , but for 21 coefficients, we would 

use 10n to 10n . For 0n the evaluation is straightforward but to avoid the 

divide by 0 error (in case of n=0), the L’Hospital’s rule could be used; 
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The impulse response given in Equation 8.8 is of the form xxsin , commonly known as 

sinc function. Rectangular functions of either time or frequency domain usually transform 

into sinc functions, when Transformed from one domain to another. The public domain 

software ‘Scilab’ has a built-in sinc function that you can use to compute the coefficients 

of the desired filter. The Coefficients given in Table 8.1 were generated with the help of 

the Scilab program and the listing is provided in Appendix B. 

 

Example 8.1. Design a low pass filter with the cutoff frequency of 1/8
th

 of the Nyquist 

frequency.  

 

We merely have to find the filter coefficients corresponding to the cutoff frequency.  It 

should be noted that the actual cutoff frequency is 2 times the value of the desired 

frequency, since we measure cutoff frequency with respect to the actual sampling 

frequency. Substituting the value of 25.0C and evaluating the Equation 8.1 for 

10n to 10n , we get 21 coefficients as described in the Table 8.1.  

 

 

 

The Table 8.1 describes the filter coefficients h(n) for 10n  to 10n . See Appendix 

B Chapter 8 for the Scilab listings to generate the coefficients. 

 

 

 

h(-10)=h(10) .0318310 

h(-9)=h(9) .0250088 

h(-8)=h(8) 0 

h(-7)=h(7) -.0321542 

h(-6)=h(6) -.0530516 

h(-5)=h(5) -.0450158 

h(-4)=h(4) 0 

h(-3)=h(3) .0750264 

h(-2)=h(2) .1591549 

h(-1)=h(1) .2250791 

h(0) .25 
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Convolving the impulse response with the input samples produces the filter output, 

 





10

10

][][
n

n nkxhky          8.9 

 

If k=0 is the current instance then the Equation 8.9 is expanded as, 

 

]9[]10[]0[]9[]10[]0[ 9100910 xhxhxhxhxhy         

 

You may recognize that the filter output of Equation 8.8 is non-causal, as it requires 

values from the future. One way to solve the problem is to shift the filter coefficients so 

that they start from 0, instead of –10, as shown in the Figure 8.3. Being a linear and time 

invariant system, the impulse response in the future is the same as impulse response in 

the past. Our modified causal filter is, 
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**** Insert Figure 8.3 here **** 

Figure 8.3. Impulse response of ideal low pass filter with cutoff frequency of 1/8
th

 of the 

Nyquist, a) non-causal, b) causal 
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The Figure 8.4 is a plot of the frequency response of the low pass filter of Example 8.1, 

together with the ideal frequency response for a comparison. 

 

 
 

 

 

**** Insert Figure 8.4 here **** 

Figure 8.4. Magnitude response of the 21-tap low pass filter (cutoff frequency 

5

2
 ) compared to the ideal filter. 

 

 

A logarithmic bode plot of the frequency response of Example 8.1 is presented in the 

Figure 8.5 to highlight the side lobe amplitude The normal plot shows the pass band 

ripples overshoot of 7% near the transition band. 
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***** Insert Figure 8.5 here ***** 

Figure 8.5. Logarithmic plot compared to the normal plot of the frequency response of 

the low pass filter of Example 8.1, showing the ripple affect. 

 

 

Decimation Filters 

 

Sometimes we acquire signals with a far higher rate then our processing or storage can 

manage. It would be wise to pass the data through a low-pass filter before throwing away 

the unwanted, simply because there are higher frequency components that may produce 

aliasing effect on the remaining data. 

Decimation is the process of reducing the sampling rate and the Decimation factor 

is the ratio of the input rate to the output rate. This ratio must be an integer since 

we cannot throwaway part of the value. If there is a need for fractional reduction 

then interpolation must be performed before decimating the data. For example, to 

change the sample rate of a signal from 48 kHz to 44.1 kHz  see Part 4: 

Resampling.)  

2.1.5 Which signals can be downsampled? 

A signal can be downsampled (without doing any filtering) whenever it is 

"oversampled", that is, when a sampling rate was used that was greater 

than the Nyquist criteria required. Specifically, the signal's highest 

frequency must be less than half the post-decimation sampling rate. (This 

just boils down to applying the Nyquist criteria to the input signal, relative 

to the new sampling rate.) 

http://www.dspguru.com/info/faqs/multrate/resamp.htm
http://www.dspguru.com/info/faqs/multrate/resamp.htm
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In most cases, though, you'll end up lowpass-filtering your signal prior to 

downsampling, in order to enforce the Nyquist criteria at the post-

decimation rate. For example, suppose you have a signal sampled at a rate 

of 30 kHz, whose highest frequency component is 10 kHz (which is less 

than the Nyquist frequency of 15 kHz). If you wish to reduce the sampling 

rate by a factor of three to 10 kHz, you must ensure that you have no 

components greater than 5 kHz, which is the Nyquist frequency for the 

reduced rate. However, since the original signal has components up to 10 

kHz, you must lowpass-filter the signal prior to downsampling to remove 

all components above 5 kHz so that no aliasing will occur when 

downsampling. 

This combined operation of filtering and downsampling is called 

decimation. 

2.1.6 What happens if I violate the Nyquist criteria in downsampling or decimating? 

You get aliasing--just as with other cases of violating the Nyquist criteria. 

(Aliasing is a type of distortion which cannot be corrected once it occurs.) 

2.2 Multistage 

2.2.1 Can I decimate in multiple stages? 

Yes, so long as the decimation factor, M, is not a prime number. For 

example, to decimate by a factor of 15, you could decimate by 5, then 

decimate by 3. The more prime factors M has, the more choices you have. 

For example you could decimate by a factor of 24 using: 

 one stage: 24  

 two stages: 6 and 4, or 8 and 3  

 three stages: 4, 3, and 2  

 four stages: 3, 2, 2, and 2  

2.2.2 Cool. But why bother with all that? 

If you are simply downsampling (that is, throwing away samples without 

filtering), there's no benefit. But in the more common case of decimating 

(combining filtering and downsampling), the computational and memory 

requirements of the filters can usually be reduced by using multiple stages.  

2.2.3 OK, so how do I figure out the optimum number of stages, and the decimation 

factor at each stage? 
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That's a tough one. There isn't a simple answer to this one: the answer varies depending 

on many things, so if you really want to find the optimum, you have to evaluate the 

resource requirements of each possibility. 

However, here are a couple of rules of thumb which may help narrow down the choices: 

 Using two or three stages is usually optimal or near-optimal.  

 Decimate in order from the largest to smallest factor. In other words, use the 

largest factor at the highest sampling rate. For example, when decimating by a 

factor of 60 in three stages, decimate by 5, then by 4, then by 3.  

The multirate book references give additional, more specific guidance. 

2.3 Implementation 

2.3.1 How do I implement decimation? 

Decimation consists of the processes of lowpass filtering, followed by 

downsampling. 

To implement the filtering part, you can use either FIR or IIR filters. 

To implement the downsampling part (by a downsampling factor of "M") 

simply keep every Mth sample, and throw away the M-1 samples in 

between. For example, to decimate by 4, keep every fourth sample, and 

throw three out of every four samples away. 

2.3.2 That almost sounds too easy... 

Beauty, eh? ;-) 

2.3.3 If I'm going to throw away most of the lowpass filter's outputs, why bother to 

calculate them in the first place? 

You may be onto something. In the case of FIR filters, any output is a 

function only of the past inputs (because there is no feedback). Therefore, 

you only have to calculate outputs which will be used. 

For IIR filters, you still have to do part or all of the filter calculation for 

each input, even when the corresponding output won't be used. 

(Depending on the filter topology used, certain feed-forward parts of the 

calculation can be omitted.),. The reason is that outputs you do use are 

affected by the feedback from the outputs you don't use. 

http://www.dspguru.com/info/books/ref.htm
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The fact that only the outputs which will be used have to be calculated 

explains why decimating filters are almost always implemented using FIR 

filters! 

2.4 FIR Decimators 

2.4.1 What computational savings do I gain by using a FIR decimator?  

Since you compute only one of every M outputs, you save M-1 operations 

per output, or an overall "savings" of (M-1)/M. Therefore, the larger the 

decimation factor is, the larger the savings, percentage-wise.  

A simple way to think of the amount of computation required to 

implement a FIR decimator is that it is equal to the computation required 

for a non-decimating N-tap filter operating at the output rate. 

2.4.2 How much memory savings do I gain by using a FIR decimator?  

None. You still have to store every input sample in the FIR's delay line, so 

the memory requirement is the same size as for a non-decimated FIR 

having the same number of taps. 

2.4.3 How do I design a FIR decimator? 

Just use your favorite FIR design method. The design criteria are: 

1. The passband lower frequency is zero; the passband upper 

frequency is whatever information bandwidth you want to preserve 

after decimating. The passband ripple is whatever your application 

can tolerate.  

2. The stopband lower frequency is half the output rate minus the 

passband upper frequency. The stopband attenuation is set 

according to whatever aliasing your application can stand. (Note 

that there will always be aliasing in a decimator, but you just 

reduce it to a negligible value with the decimating filter.)  

3. As with any FIR, the number of taps is whatever is required to 

meet the passband and stopband specifications.  

2.4.4 How do I implement a FIR decimator? 

A decimating FIR is actually the same as a regular FIR, except that you 

shift M samples into the delay line for each output you calculate. More 

specifically: 

1. Store M samples in the delay line.  
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2. Calculate the decimated output as the sum-of-products of the delay 

line values and the filter coefficients.  

3. Shift the delay line by M places to make room for the inputs of the 

next decimation.  

Also, just as with ordinary FIRs, circular buffers can be used to eliminate 

the requirement to literally shift the data in the delay line. 

2.4.5 Where can I get source code to implement a FIR decimator in C? 

Right here. Our "multirate_algs" package includes a decimation routine. 

You can download it from dspGuru's DSP Algorithm Library. 

2.4.6 Where can I get assembly code to implement a FIR decimator? 

The major DSP vendors provide examples of FIR decimators in their data 

books and application notes; check their web sites. 

2.4.7 How do I test a FIR decimator? 

You can test a decimating FIR in most of the ways you might test an 

ordinary FIR: 

1. A special case of a decimator is an "ordinary" FIR. When given a 

value of "1" for M, a decimator should act exactly like an ordinary 

FIR. You can then do impulse, step, and sine tests on it just like 

you can on an ordinary FIR.  

2. If you put in a sine whose frequency is within the decimator's 

passband, the output should be distortion-free (once the filter 

reaches steady-state), and the frequency of the output should be the 

same as the frequency of the input, in terms of absolute Hz.  

3. You also can extend the "impulse response" test used for ordinary 

FIRs by using a "fat impulse", consisting of M consecutive "1" 

samples followed by a series of "0" samples. In that case, if the 

decimator has been implemented correctly, the output will not be 

the literal FIR filter coefficients, but will be the sum of every 

subset of M coefficients.  

4. You can use a step response test. Given a unity-valued step input, 

the output should be the sum of the FIR coefficients once the filter 

has reached steady state.  

 

 

High-pass filters 
 

http://www.dspguru.com/sw/opendsp/alglib2.htm
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The high-pass filter frequency response is as shown in the Figure 8.1.b. The only non-

zero values are from  to 1  and from 1 to ; this is as if the low-pass filter is 

subtracted from 1. 
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The corresponding impulse response is, 
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Substituting the value of h(n) from the derivative of Equation 8.10 we get high pass filter 

coefficients, 
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The following is an example of high pass filter design. 

 

Example 8.2. Design a high pass filter with the cutoff frequency of 3/5
th

 of the Nyquist 

frequency.  

 

Computed values of 21 coefficients for a high cutoff frequency of 6.0 ( 3.01  ) are 

shown in the Table 8.2 for 10n  to 10n . 

 

 

Table 8.2.The filter coefficients for the high pass filter with the cutoff frequency of 6.0 .  

 

 

h(-10)=h(10) 0 

h(-9)=h(9) .0336367 

h(-8)=h(8) -.0233872 

h(-7)=h(7) -.0267283 

h(-6)=h(6) .0504551 

h(-5)=h(5) 0 

h(-4)=h(4) -.0756827 

h(-3)=h(3) .0623660 

h(-2)=h(2) .0935489 

h(-1)=h(1) -.3027307 

h(0) .4 
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The convolution equation of the high pass filter coefficients with the input samples is 

presented in Equation 8.11. 

 





20

0

][][
n

HP nkxhky          8.11 

 

The frequency response is as shown in the Figure 8.6. 

 

 

 
 

**** Insert Figure 8.6 here **** 

Figure 8.6. Magnitude response of the 21-tap high pass filter (cutoff frequency 

5

3
 ) compared to the ideal filter. 

 

 

 

Band-pass Filters 
 

The ideal Band-pass filter frequency response is shown in the Figure 8.1.c. The band pass 

center frequency is 0  and C 01 , C 02 . The cutoff frequency 

C refers to the low pass filter of Figure 8.1.a. The corresponding impulse response is 

obtained from the appropriate integration of Equation 8.4, 
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The following example demonstrates the design of a band pass filter using filter 

coefficients of Equation 8.12.  

 

Example 8.3. Design a Band pass filter with the low cutoff frequency 2/5
th

 of the 

sampling frequency and the high cutoff frequency 3/5
th

 of the sampling frequency. 

  

 

For the band pass filter of ( 4.01  ) and the high cutoff frequency of ( 6.02  ) are 

shown in the Table 8.3 for 10n  to 10n . (See Appendix B for the Scilab listing to 

generate the coefficients). 

 

 

 

 

Table 8.3. The filter coefficients for a band pass filter for 10n  to 10n . 

 

 

h(-10)=h(10) -.0318310 

h(-9)=h(9) -.0250088 

h(-8)=h(8) 0 

h(-7)=h(7) .0321542 

h(-6)=h(6) .0530516 

h(-5)=h(5) .0450158 

h(-4)=h(4) 0 

h(-3)=h(3) -.0750264 

h(-2)=h(2) -.1591549 

h(-1)=h(1) -.2250791 

h(0) -.2 

 

 

And the filter output is, 
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The frequency response of the Equation 8.12 is as shown in the Figure 8.7. 
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**** Insert Figure 8.7 here **** 

Figure 8.7. Magnitude response of the 21-tap band pass filter of Example 8.3 

 

 

 

Band-stop Filters 
 

We can obtain an expression for a band-stop filter, similar to band-pass filter by the 

appropriate integration of Equation 8.4, 
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Example 8.4. Design a Band stop filter with the low cutoff frequency 2/5
th

 of the 

sampling frequency and the high cutoff frequency 4/5
th

 of the sampling frequency. 
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For the band pass filter of ( 4.01  ) and the high cutoff frequency of ( 8.02  ) are 

shown in the Table 8.3 for 10n  to 10n . Please see Appendix B for the Scilab 

listing to generate the coefficients. 

 

 

 

 

Table 8.4. The filter coefficients for a band pass filter for 10n  to 10n . 

 

 

h(-10)=h(10) 0 

h(-9)=h(9) -.0128481 

h(-8)=h(8) -.0612286 

h(-7)=h(7) .0699755 

h(-6)=h(6) .0192721 

h(-5)=h(5) 0 

h(-4)=h(4) -.0289082 

h(-3)=h(3) -.1632762 

h(-2)=h(2) .2449143 

h(-1)=h(1) .1156328 

h(0) -.4 

 

 

 

A plot of the filter Transfer Function of the Equation 8.14 is shown in the Figure 8.8. 

 

 

 

 
**** Insert Figure 8.8 here **** 
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Figure 8.8. Magnitude response of the 21-tap band stop filter (low cutoff frequency 

5

2
 ), (high cutoff frequency 

5

4
 ), compared to the ideal filter 

 

 

 

 

The FIR filters derived from the ideal response always produce ripples in the pass band 

region. These ripples are the result of truncating the infinite coefficients Fourier series 

while ignoring sinusoids in the process of summation. Increasing the number of filter 

coefficients improves the ripples somewhat (see Figure 8.9 for a comparison of 11, 21 

and coefficients Transfer Function). These ripples are unavoidable, but there are ways to 

improve the design and that is topic of discussion of our next section. 

 

 

 

 

 
 

***** Insert Figure 8.9 here ***** 

Figre 8.9. The logarithmic response of 11-tap, 21-tap and 31-tap Rectangular Window 

 

 

Windowing 
 

Frequency domain multiplication is akin to time domain convolution; similarly, time 

domain multiplication is the same as frequency domain convolution. Performing Fourier 

Transform on a set of data is like having a window to a different domain. From the 

window of convolution, we see frequencies and through frequency domain 
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multiplication, we see time series. We see one through the other. Imagine (when 

performing the infinite summation) as if you are looking through a convolving window, 

and you see all the frequencies that are present in the impulse response. But a truncated 

series would miss out some frequencies and that shows as ripples in the Transfer 

Function. It has the same effect as multiplying an infinite impulse response with a 

rectangular window of 1’s and 0’s. In our example filters of 21 coefficients, we were 

forced to truncate the infinite number of coefficients into a fixed number of 21 values. 

We were by default using a rectangular window of twenty-one 1’s and rest 0’s as shown 

in the Figure 8.10. 

 

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0 

 

The Fourier series equivalent of the ideal frequency response of Figure 8.1b is given as, 
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The coefficients kc represent the amplitudes of the impulse response. But for practical 

consideration, the infinite summation must be truncated to a finite value, 
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The affect of multiplying the kc  values with a series of (2N+1) non-zero terms can be 

described graphically, as shown in the Figure 8.11. The number of sample points (2N+1) 

merely indicates a symmetric window with N number of sample points on each side of 

the center.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

***** Insert Figure 8.10 here ***** 

Figure 8.10. Discrete time rectangular window of 21 points 
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The window determines how much of the impulse response can be seen. Looking from 

the multiplication window, an infinite length impulse response h(n) (essentially, an 

inverse Fourier Transform of an ideal frequency response) when multiplied with a 

rectangular window w(n) produces a truncated impulse response t(n). This is a time 

domain multiplication, but the effect is same as frequency domain convolution and that is 

what we obtained when we realized the Transfer Function through a truncated series of 

impulse response, see the Figure 8.11. The result of chopping of the ends of the infinite 

series shows up as ripples in the Transfer Function near the Transition band as well as 

side lobes in the stop band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

***** Insert Figure 8.11 here ***** 

Figure 8.11. Time domain multiplication of the Rectangular Window with the infinite 

impulse response of the ideal infinite Rectangular Window 

 

 

 

 

Ideally, if the rectangular convolving window were as large as the frequency response 

window, there wouldn’t be any distortion of the resulting Transfer Function. Looking 

from another angle, the process of obtaining the actual impulse response )(AH  is as if 

we have done a frequency domain convolution of a rectangular convolving window 

)(W with an ideal frequency response )(IH .  

X 

= 
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)(*)()(  WHH IA  

 

 

Besides rectangular window, other functions produce coefficients that when multiplied 

by the impulse response of the ideal filters improve the filter performance, as shown in 

the next section. 

 

 

 

 

The Rectangular Window 
 

  

 

We characterize a rectangular window as a series of (2N+1) non-zero terms. The values 

are either 1 (inside the window) or 0 (outside the window). It is convenient to have a 

window symmetric on 0, thus we have N sample points on each side. We can always shift 

the window so that it begins with 0 to make it a causal window. 

 

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0 

 

 

For 2N+1 number of 1s, the window becomes, 
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The Fourier Transform of the rectangular window of Equation 8.16 is, 
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
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The Equation 8.17 is a polynomial evaluated on a unit circle whose coefficients are 1 and 

the Figure 8.5 is its frequency response plot where N=10. The Scilab instructions for 

evaluating the Transfer Function magnitude of Equation 8.17 are provided in Appendix B 

Chapter 8 fig8_12. 

 

The Figure 8.12 is the magnitude of Equation 8.17 plotted for different values of N. 

Notice, the reduction in transition width as we increase the number of coefficients. But 

the side lobe amplitude remains same. The side lobe amplitude is specific to a window 

function and is independent of the number of coefficients in the window. For rectangular 

window the first side lobe amplitude is around 13 dB, which is about 1/5
th

 of its pass 
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band magnitude. In most situations it is probably not an acceptable value, but compare to 

other windows the rectangular window offers a steeper transition width. 

   
 

***** Insert Figure 8.12 here ***** 

Figure 8.12. The plot showing the magnitude response of the Rectangular Window for 

different number of filter coefficients 

 

 

 

There is an approximate relationship between the transition widths and the number of 

coefficients, and for a rectangular window, it is 9.1)12(  fN . Two aspects are 

important when specifying a filter, 

 

1) The transition width. 

2) The side lobe amplitude. 

 

The number of coefficients affects the transition width, but the side lobe amplitude is 

fixed for a window type.  
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Example 8.5: 

 

Suppose a low pass filter is specified as, 

 

   2.1)(8.0  jeH    18.00   

2.0)( jeH    22.0  

 

The requirements of magnitude drop of 0.2 is within the reach of the rectangular window, 

and we can compute the number of coefficients for the transition width of 0.04 as, 

 

9.104.0)12( N  

 

23N  

 

 

 

The magnitude summation of the Equation 8.17 can also be expressed as, 
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If we were to normalize the window function to a unit area (meaning the sum of the 

coefficients to be equal to 1) then each coefficient is an equal weight of 
12

1

N
 and the 

Equation 8.18 becomes 
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And the corresponding impulse response of Equation 8.19 becomes, 
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All the filters being discussed in the previous section were designed using the rectangular 

window, as the coefficients were generated with the values from the ideal rectangular 

transfer function. Next, we discuss other window functions that have better suppression 

in the stop band region compare to the rectangular window. 

 

 

 

Power Window 
 

Shaping the rectangular window with a power function multiplier can make a simple       

design improvement. In fact, any function whose values tapers off towards the end can 

serve the purpose of a window shaper and provide a performance improvement. A 

function that puts increasingly extra weight towards the end is, 
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The maximum weight of the power function of Equation 8.20 is 1 when k=0 and for k=N 

the power function tapers off to 0 values. 
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The Table 8.5 shows the calculated values of 21 coefficients of the power window. 

 

 

 

 

Table 8.5. Coefficients for a 21-tap low pass filter (cutoff frequency 4.0C ). 

 

h(-10)=h(20) 0  

h(-9)=h(19) -.0063910 

h(-8)=h(18) -.0084194 

h(-7)=h(17) .0136314 

h(-6)=h(16) .0322913 

h(-5)=h(15) 0 

h(-4)=h(14) -.0635734 

h(-3)=h(13) -.0567530 

h(-2)=h(12) .0898070 

h(-1)=h(11) .2997034 

h(0) .4 

 

 

The Figure 8.13 is the magnitude of Equation 8.21 plotted for different values of N and 

the Scilab instructions for evaluating the Transfer Function magnitude are provided in 

Appendix B Chapter 8 fig8_13. There is some improvement in the side-lobe amplitude as 

it dropped down to nearly 21 dB but the transition width goes up from 1.9 to 2.8 for the 

same number of coefficients. It only indicates that in order to meet the requirement of 

steeper roll-off of frequency response we must increase the number of coefficients.   
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***** Insert Figure 8.13 here ***** 

Figure 8.13. The plot showing the magnitude response of the Power Window for different 

number of filter coefficients 

 

 

The following example illustrates the difference between rectangular window and the 

power window for the number of coefficients required for the same transition width as in 

rectangular window. 

 

 

Example 8.5: 

 

Suppose a low pass filter is specified as, 

 

   1.1)(1.0  jeH    18.00   

1.0)( jeH    22.0  

 

The requirements of magnitude drop of 0.1 is within the reach of the power window, and 

to achieve the transition width of 0.04, we get, 
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8.204.0)12( N  

 

35N  

 

 

 

The Figure 8.14 is the plot of the filter response of Example 8.1 using Hamming Window 

coefficients (together with rectangular window for comparison). There is a 3% overshoot 

near the transition band but the filter has a steeper response compare to other window 

functions, see the Figure 8.21. 

 

 

 

 

 
 

 

***** Insert Figure 8.14 here ***** 

Figure 8.14. Figure showing reduction in the side lobe amplitude with the Power Window 

compared to the Rectangular Window. 
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Von Hann Window  
 

A more severe weighting average that would put extra weight at the end is a cosine 

function, given in Equation 8.22. This is the Von Hann window or the raised cosine 

window, 
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The following table provides the values of Equation 8.22 for k=0 through 9, and being a 

symmetric window the values for k = -1 to –9 are same as k=1 through 9. 
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***** Insert Figure 8.15 here ***** 

Figure 8.15. Figure showing reduction in the side lobe amplitude with the Von Hann 

Window compared to the Rectangular Window. 

 

 

 

The magnitude of Equation 8.22 plotted for different values of N is presented in Figure 

8.16. (The Scilab instructions are provided in Appendix B Chapter 8 fig8_16.) The side 

lobe amplitude drops down to nearly 31 dB but compare to rectangular window the 

transition width went up from 1.9 to 4.2.  
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***** Insert Figure 8.16 here ***** 

Figure 8.16. The plot showing the magnitude response of the Von Hann window for 

different number of filter coefficients 

 

 

The filter specifications of the Example 8.5 are met with 52 coefficients for Von Window 

compare to 23 coefficients of the rectangular window, but on the bright side, we do get a 

suppression of 31dB in the stop band region. 

 

 

2.404.0)12( N  

 

52N  

 

 

 

 

 

Hamming Window 
 

The Hamming Window, also known as cosine window with platform is given as 
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The following table provides the values of Equation 8.23 for k=0 through 9, 
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The Figure 8.17 shows the magnitude of the Equation 8.23 plotted for different values of 

N with the help of Scilab program, (see Appendix B Chapter 8 fig8_17). The side lobe 

amplitude drops down to nearly 41 dB but compare to rectangular window the transition 

width goes up from 1.9 to 4.4.  
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***** Insert Figure 8.17 here ***** 

Figure 8.17. The plot showing the magnitude response of the Hamming Window for 

different number of filter coefficients 

 

Compare to rectangular window a transition width of 0.4 requires, 

 

8.104.0)12( N  

 

55N  

 

 

A plot of the filter response of example 1, modified by the Hamming window is 

presented in the Figure 8.18 (Together with rectangular window for comparison.) There 

is a 0.03% overshoot near the transition band and the side lobe suppression is more 

aggressive, but there is an increase in the width of the roll off of transition band. (See the 

Figure 8.21 for comparison.) 
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***** Insert Figure 8.18 here ***** 

Figure 8.18. Figure showing reduction in the side lobe amplitude with the Hamming 

window compared to the rectangular window. 

 

 

 

Kaiser Window 
 

The Kaiser window’s weighting function has a flexible design option. You can specify a 

range of allowable ripples in the side lobes, (those were fixed in the other window 

options). The function is given as, 
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The parameter 0I  is the modified Bessel function of the first kind and zero order. The 

Equation 8.23 approximates the Bessel Function where summation limit M is an arbitrary 

limit. We can stop computing the Bessel terms when the value becomes less then a 

prescribed low limit. The Scilab program for computing Kaiser Window coefficients 

using Equation 8.23 is presented in Appendix B Chapter 8, (see function Kaiser_coeff()).  

 

The  value specifies its frequency response in terms of the main lobe width and the side 

lobe level. Large value of  corresponds to a wider main lobe with smaller side lobe 

levels. The normal range of   is 94   . The parameter M is chosen such that the 

last term in series is less than 8101  . The following table was computed using the value 

 2 . (See Appendix B chapter 8 fig8_21. 

 

0)10(

0361.)9(

1296.)8(

2601.)7(

4096.)6(

5625.)5(

7056.)4(

8281.)3(

9216.)2(

9801.)1(

1)0(























KR

KR

KR

KR

KR

KR

KR

KR

KR

KR

KR

W

W

W

W

W

W

W

W

W

W

W

 

 



 38 

R.W Hamming has summarized the empirical relationship between the parameter   and 

the stop band ripples  in dB as follows, 
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And the relationship between the transition width and the number of coefficients for is 

given as, 
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For a stop band ripple of 0.01 and transition width of 0.01f we could calculate the number 

of coefficients as, 
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The Figure 8.19is the magnitude of Equation 8.23 plotted for different values of N. The 

relationship between the number of coefficients and the transition width for the  2 is 

given as, 44.0)12(  fN .  
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***** Insert Figure 8.19here ***** 

Figure 8.19.The plot showing the magnitude response of the rectangular window for 

different number of filter coefficients 

 

 

 

 

The Figure 8.20 is a plot f filter response of the Kaiser Window function of Equation 8.23 

compare to the rectangular window. 
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***** Insert Figure 8.20ere ***** 

Figure 8.20. Figure showing reduction in the side lobe amplitude with the Kaiser window 

compared to the rectangular window. 

 

 

 

A comparison of window functions shows that applying window function is a better 

alternate than increasing the coefficients of a rectangular window. The Figure 8.21 is a 

Bode plot of the response of the four Window functions as mentioned in the previous 

section. 
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***** Insert Figure 8.21 here ***** 

Figure 8.21. The comparison of the side lobe amplitudes of the Power Window, Von 

Hann Window, Hamming Window and the Kaiser Window 

 

 

 

 

Conclusion 
 

We have studied the Fourier Transform method of designing filters, commonly known as 

Finite Impulse Response (FIR) filters. The method provides filters that do not depend 

upon values from past, and the impulse response has a finite duration, thus, providing a 

linear phase response compare to the infinite impulse response method where the initial 

transients stay on for a long time. 


