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Chapter6 – Filter Design 
 

 

In this chapter 

 

 

 Filter Terminologies 

 

 Filter Design methods 
 

 Analog Filters 
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Introduction 
 

A ‘Signal’ is any useful information and a ‘Noise’ is the not so useful information, 

invariably, a part of the Signal. The Signals, seemingly arbitrary in nature, may be 

thought of as superimposed sinusoidal functions (the fundamental and the harmonics), as 

described by Fourier. You can imagine what would happen to Signal frequencies, if they 

were passed through a system of energy storage elements (such as the Linear Time 

Invariant systems we have been studying, that in itself has an impulse response in the 

form of sinusoidal functions), obviously, the matching frequencies in the Signal and 

System would be enhanced and the unmatched frequencies would be subsided. The result 

is like a filter, separating the desired frequencies from the undesired. We can tailor the 

response of such systems to our wishes, by physically choosing the components (in case 

of an analog system) or the coefficients (in case of a digital system) and this is the basics 

of the filter design, suppressing or enhancing a specific frequency or a set of frequencies 

by passing a Signal source through a system of energy storage elements. Filters modify 

signals in way specified by the filter’s frequency response. 

In essence, a filter is a system, capable of generating response based on the frequency 

selection. An analog filter is an electrical network comprising physical components of the 

resistors, capacitors and inductors, whereas, a digital filter is a computer software 

algorithm producing the filter response. Filters can either extract and amplify or reject 

and subside a specific frequency or range of frequencies, but they can also be designed to 

create a pattern of frequencies as a response to a stimulus. The current trend is towards 

the Digital Filter design but still, the analog filters are much in demand in high frequency 

arena as well as feedback and control systems where the response time is critical. 

We have discussed filters in our previous chapter of solutions of differential equations 

and have designed some simple low-pass and high-pass filters, using both, the analog and 

the digital techniques. The reason for a tandem discussion is that most analog filters are a 

precursor of digital filters and have roots behind the filter designs mathematics. The 

criteria of any filter design are to establish the boundary of the desirable frequencies and 

then define how much suppression of the undesired frequencies is acceptable. Remember, 

frequencies can never be eliminated they can only be suppressed. The first criterion 

provides the cutoff frequency and the second one establishes how many poles and zeros 

are required in the filter design. The design methods are well established in both, the 

analog and the digital domain and the design procedures are a simple matter of selecting 

the appropriate components or coefficients. In this chapter, some commonly used designs 

of analog filters are being discussed that may become prototype for our next chapter of 

the Digital Filter design. 

 

We begin our discussion with the explanation of terms, normally used in both, the analog 

and the digital filters. 
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Filter Terminologies 
 

The following terminologies explain different aspects of filter characteristics. See Figure 

6.1.a and 6.1.b for a reference. 

 

1. Pass-band: Frequency range preserved in the output 

2. Stop-band: Frequency range suppressed in the output 

4. Gain: Amount of maximum amplification in the output 

6. Transition-band: The region of frequencies between pass-band and stop-band. 

7. Stop-band attenuation: The difference in dB between the pass-band and the 

stop-band gain. 

8. Pass-band ripple: The maximum fluctuation in the frequency response in the 

pass-band. 

9. Stop-band ripple: The maximum fluctuation in the frequency response in the 

stop-band. 

10. Roll off rate: The steepness of the slope in the transition band, (multiples of 

20db/decade). 

11. Order: The number of poles in the system function H(s). The higher the order, 

the steeper the roll off 

12. Cutoff frequency: The edge of the pass-band. (3db point) 

13. Q: The sharpness of the peek in a band-pass filter.  
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****Insert Figure 6.1a here***** 

Figure 6.1a Different characteristics of a filter response 
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****Insert Figure 6.1b here***** 

Figure 6.1 The cutoff frequency and Q of a band-pass filter  

 

Filter Design methods 
 

We have seen in the previous chapter of the Solutions of Differential Equations, how a 

first and second order differential equation’s response acts as a frequency selector. The 

filter design is essentially implementing solutions of differential equations, either through 

the Laplace Transform or the Convolution process. but the modeling is done through the 

Transfer Function that formed the input and output relationship. 

 

The higher frequencies are suppressed from the voltage across the capacitor, in a network 

of resistor and capacitor. Similarly, the lower frequencies are suppressed from the voltage 

across the resistor, in the network of a resistor and capacitor and a band-limited response 

is achieved with a second order section.  

 

The concept of poles and zeros is central to the filter design as they can be directly 

translated to the Transfer Function of the system. You have seen in the previous chapter, 

how magnitude of pole and zero vectors define the cutoff regions. The frequencies 

beyond the pole frequencies are reduced substantially and the frequencies beyond the 

zero vectors are enhanced largely. Being a linear system, the overall filter response is the 

sum of the individual poles and zeros response. Although, any form and shape of the 

frequency response could be obtained by carefully selecting these vectors, but the 

response generally falls into the following four basic types, 

 

Low-pass, high-pass, band-pass and band-stop filters. There are variations of filters 

such as notch filters, narrow band-pass etc. that are special implementations of the band-

pass and the band-stop filters. 

 

As the name suggest, the low-pass filters allow low-frequency to pass through, but stop 

high frequencies, the high-pass filters allow high frequencies to pass through but stop 

low frequencies, the band-pass filters allow a specific band of frequencies to pass 
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through but stop all others and the band-stop filters allow all frequencies to pass through 

except a certain band. 

 

The fact that the LTI systems only alter the amplitude or phase but not the frequency 

itself, leaves us with only one choice and that is to suppress the undesired frequencies. 

Ideally, we would like to have the desired frequencies untouched while the undesired 

frequencies eliminated, as shown in the Figure 6.2, but this is not practical as it requires 

infinite filter blocks, so we will leave the quest for achieving the ideal response only as a 

goal to strive. 
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****Insert Figure 6.2 here***** 

Figure 6.2. Ideal filter response: a) Low pass, b) high pass, c) band pass d) band stop 

filters 

 

The digital and analog filters may be identical in their response, but the implementation 

of each is entirely a different matter. For analog filters, the Transfer Function is 

implemented as a circuit design with the coefficient values translated to the component 

values of the resistors, capacitors and inductors (op-amps may be added in place of 

inductors and to isolate the blocks of circuits from one another). On the other hand, the 

digital filters are realized by transforming the Transfer Function in to a difference 

equation that is to be solved with convolution using an iterative algorithm.  
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Every filter has a corresponding Transfer Function, but it is easier to implement filters in 

terms of the building blocks of Transfer Functions. It not only reduces the complexity of 

the overall system, but also gives a modular approach to the implementation process. The 

building block approach is explained in the next section. 

 

Building Blocks of Transfer Functions 
 

We have seen in the previous chapter, that each pole contributes to a 20 dB drop in the 

roll-off rate of the frequency response. The response is improved as we add more poles to 

the Transfer Function of the system, but then the order of the polynomial grows as we 

add more poles, making the system more complex to design. One way to simplify the 

complexity is to cascade blocks of simple Transfer functions. These blocks are made up 

of the first and second order systems of single real or single complex poles and zeros. 

Complex filters are implemented as cascades of the basic building blocks.  

 

The following Transfer Functions provide the four basic types of filters, namely the low-

pass, high-pass, band-pass and band-stop. The equivalent circuit matching the Transfer 

Function is being described in the next section of analog filters and the equivalent 

difference equations for the digital filters are being discussed in the next chapter. 

 

 

First order low-pass filter Transfer Function 

 

The Transfer Function of Equation 6.1 is a low-pass single pole filter with the cutoff 

frequency of p1 and the gain of K at 0 frequency.  
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The phase function from the Equation 6.1 is 
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The normalized form can be derived with a known value of 1p as 
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
   and the 

normalized frequency and phase response of the low-pass transfer function is shown in 

the Figure 6.3.a. and 6.3.b 
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****Insert Figure 6.3 here***** 

Figure 6.3. First order low-pass filer response, a) Magnitude response, b) Phase response  

 

Second order low-pass filter Transfer Function 

 

A 40 dB roll-off rate may be achieved with the addition of an extra pole resulting in the 

Transfer Function of Equation 6.2, 
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The magnitude response may be obtained by substituting by js  in Equation 6.2 
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The phase function from the Equation 6.2 is 
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The normalized form can be derived with a known value of  as 



 n  and the 

normalized frequency and phase response of the low-pass transfer function is shown in 

the Figure 6.4.a. and 6.4.b 

 

 

Note: When  2 the Equation 6.2 becomes a second order Butterworth polynomial 

that we will discuss later in the chapter. 

 

 

 
****Insert Figure 6.4 here***** 

Figure 6.4. Second order low-pass filer response, a) Magnitude response, b) Phase 

response  

 

First order high-pass filter Transfer Function: 

 

The following Transfer Function is for a high-pass single pole filter with the cutoff 

frequency of p1 and the gain of K at 0 frequency. 
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The magnitude response is 
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The phase function from the Equation 6.3 is 

 



 9 

1

1

1

1 1
tan

1
tan)arg(

pp
K



   

 

The magnitude and phase response is shown in Figure 6.5.a. and 6.5.b 

 
 

****Insert Figure 6.5 here***** 

Figure 6.5 First order high-pass filer response, a) Magnitude response, b) Phase response  

 

The second order high-pass filter Transfer Function 

 

The second order gain of a high-pass filter is given as, 
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The magnitude response is 
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The phase function from the Equation 6.4 is 
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The normalized form can be derived with a known value of 0b as 
0b

n


   and the 

normalized frequency and phase response of the second order low-pass transfer function 

is shown in the Figure 6.6.a. and 6.6.b 

 

 

 
 

****Insert Figure 6.6 here***** 

Figure 6.6 Second order highs filer response, a) Magnitude response, b) Phase response  

 

 

The second order band-pass filter Transfer Function 

 

The band-pass filter is usually defined in terms of the center frequency 0 and its two 

side frequencies dB3  where the gain falls off to the -3dB of the center frequency. The 

Transfer Function is given as 
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Where )( 30 dbQ   

 

The width of the bandwidth is controlled by the quantity Q. If a narrow bandwidth is 

desirable then set the Q to a high value such as 10 or more. 

 

 

The magnitude response is 
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The phase function from the Equation 6.5 is 
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The magnitude and phase response is shown in Figure 6.7.a. and 6.7.b 

 

 
****Insert Figure 6.7 here***** 

Figure 6.7 Second order band-pass filer response, a) Magnitude response, b) Phase 

response  

 

 

The second order band-stop filter Transfer Function 

 

The band-stop filter is also known as notch filter. Similar to the band-pass filter, the 

Transfer Function is defined in terms of the center frequency c that would be removed 

from the system and the two side frequencies 0 with the –3dB gain. The Transfer 

Function is given as 
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Where )( 30 dbQ   
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The magnitude response is 
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The phase function from the Equation 6.6 is 
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 The magnitude and phase response is shown in Figure 6.8.a. and 6.8.b 

 

 

 
****Insert Figure 6.8 here***** 

Figure 6.8 Second order band-pass filer response, a) Magnitude response, b) Phase 

response  

 

Systems often require more sophisticated filter response then the 3dB gain and 20dB per 

decade drop in the roll-off rate as provided by the first order Transfer Function 

polynomials. There are different methods that enhance different aspects of the filter 

characteristics. The Chebychev filters improve upon the roll-off rate but add ripples in the 

pass-band region, whereas, the Butterworth filters give flatter response in the pass-band 

region but are not very efficient in the roll-off rate. We will discuss the Butterworth 

filters in the next section and the Chebyshev filter in the coming chapter. 

 

 

Butterworth Filters 
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The goal in any filter design is to get as closer as possible to the ideal filter response. We 

would like to see a flatter response in the pass-band region and a steeper roll-off in the 

transition band. The Butterworth polynomials offer such a response. The response 

function is given as, 
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If   is normalized with respect to the cutoff frequency 1
Cutoff

o



 , the magnitude 

response of Equation 6.7 becomes 0.707 for all values of n. The contribution becomes 

less significant for the 1o  and for 1o  the magnitude approaches 0 faster with 

increasing n. The result is a flatter response for frequencies less than the cutoff frequency 

and steeper roll for the frequencies greater than the cutoff frequency with increasing n as 

shown in the Figure 6.9. 

 
****Insert Figure 6.9 here***** 

Figure 6.8 The Butterworth response with different values of n. 

 

 

We can approximate the Equation 6.7 using 1...111   for , resulting in the 

Equation 6.8.  
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Let’s analyze the Transfer Function of the simple low-pass filter of the Equation 6.7, 

rewritten as the square magnitude in the following Equation. 
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Where C  is the cutoff frequency and as   the response approaches 0 and when 

0  the response is 1. In between there is a gradual loss of magnitude. Precisely, at 

cutoff frequency of C  the magnitude is –3dB. This is equivalent of the first order 

Butterworth response as shown in Equation 6.7. The expansion of coefficients N)( 0 may 

be explained as follows, 

 

 

Butterworth expansion 

 

If the power vectors of the pole frequency C  were to be drawn on a circle, (with the 

radius ( C ) that can be normalized and set equal to 1, all vectors would appear as equally 

spaced on a semi circle. Since, multiplying a unit vector to itself simply shifts the vector 

to an angle, the roots of Equation 6.7 are all shifted by an angle N with respect to the 

real axis. This could be evident from the following analogy, 

 

The poles are actually roots of the equation, 
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The Figure 6.10 indicates pole locations for various values of N.  Except for the first pole, 

all others are complex conjugates. If N is even, all poles are complex conjugates and 

when N is odd, there is only one real and the rest are complex conjugates poles. An nth 

order Butterworth Filter is defined as, 
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The following calculations indicate the pole vectors for different values of N, 
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****Insert Figure 6.10 here***** 

Figure 6.10 Pole locations of Butterworth response  

 

 

 

Next, we discuss the implementation details of the Transfer Functions in terms of the 

electronic circuit designs for the analog filters (the digital filters are being discussed in 

the next chapter).  

 

Analog Filters 
 

In analog domain a filter is a circuit that produces the expected response specified by the 

corresponding filter Transfer Function. We have seen in the previous chapter of the 

Solutions of Differential Equations, how a first and second order differential equation’s 

response acts as a frequency selector. The higher frequencies are suppressed from the 

voltage across the capacitor, in a network of resistor and capacitor. Similarly, the lower 

frequencies are suppressed from the voltage across the resistor, in the network of a 

resistor and capacitor. 

 

The filter circuitry in our designs will have basically two types of components, the 

passive components (the resistors and capacitors) and the active components (the op-

amps), hence, the name Active RC Filters. The op-amps play dual role in the analog 

filters. They not only simulate inductors (if needed as a second order section) but also act 

as non-interacting blocks to prevent loading effects on the passive components. Since, 

op-amps play important role in setting up the network equations, a brief overview is 

presented next as a refresher. 

 

 

Op-amp as differential amplifier 

 

A differential amplifier’s function is to amplify the difference between two signals. The 

basic schematic of the op-amp is represented in the Figure 6.11.a and the corresponding 

circuit model is shown in Figure 6.11.b The Ri is the differential input impedance of an 

extremely high value with practically no current flowing through it. The Ro is the output 

impedance, a negligible quantity as if it does not exist in the circuit. The amplifier gain of 

Figure 6.11.a is expressed as  

 

)( 21 vvav oo   

 

Where a0 is the open loop gain of the op-amp when there is no feed back and is usually 

very large in the range of 10
5
 to 10

6
, considered infinite for an ideal op-amp. We will use 

the equivalent of voltage controlled voltage source as shown in the Figure 6.11.b in the 

loop analysis of network when we use op-amps in our filter design. 

 

Two things need to be remembered when dealing with op-amps,  
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a) Infinite input resistance means the current into the inverting input is zero: 

 

0i  

 

b) Infinite gain means the difference between v+ and v- is zero: 
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****Insert Figure 6.11a here***** 
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****Insert Figure 6.11b here***** 
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****Insert Figure 6.11c here***** 

Figure 6.11 a) Op-amp as a differential amplifier, b) Equivalent circuit model  

c) Input and output voltage across the op amp.  

 

The two most common configurations are provided next to help identify the loop 

equation created by a filter circuit. 

 

Inverting Amplifier 

 

The Figure 6.12.a shows an inverting amplifier configuration, the Figure 6.12b shows the 

summation of current at the inverting input. 

 

The current passing through the two resistors is equal, 
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Since all the current is passing through the source resistor R1 and the feedback resistor R2, 

we have the following voltage drop 
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Resulting in the amplifier voltage gain of 
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The op amp will provide whatever output voltage is necessary so that both the input 

voltages equal. 
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****Insert Figure 6.12a here***** 
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****Insert Figure 6.12b here***** 

 

 

 

 

Figure 6.12. a) The inverting configuration of an op-amp b) Summation of the current at 

the node  

 

 

 

Non-Inverting Amplifier 

 

The Figure 6.13 is a non-inverting amplifier configuration showing the summation of the 

current at the inverted input. 
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Since no current is passing through any of the op-amp input, the two input voltages are 

equal, 
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Resulting in the voltage gain of 
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****Insert Figure 6.13 here***** 

Figure 6.13. The non-inverter configuration of an op-amp 

 

 

With the basic configurations of op-amps in place, we are ready to design some simple 

building block analog filters using the resistors, capacitors and op-amps. 
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Active RC Filters 

 
The design of the analog filters requires establishing the loop equations of the four basic 

types of the filter Transfer Functions, namely, the low-pass, high-pass, band-pass and 

band-stop filters. The requirements are specified in terms of the cutoff frequencies, 

establishing the poles and zeros of the filter’s Transfer Function and improvement is 

achieved by cascading several blocks in series. The network loop equation parameters 

directly correspond to the component values and the design requirement is simply a 

matter of choice between the different component compositions. 

 

Single pole low-pass filter 

 

The circuit of Figure 6.14 is a single pole low pass filter, corresponding to the Transfer 

Function of Equation 6.10.The output Vc measured on the capacitor C is given as, 

 

CR

C

I

O

ZZ

Z

V

V
sH


)(  

 

Substituting for the value of 
Cj

ZC 
1  and RZ R  , 

RCjV

V
jH

I

O







1

1
)(  

 

Presenting the Transfer Function in a vector form, 

 

       (6.10) 
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****Insert Figure 6.14 here***** 

Figure 6.14. First order low-pass active RC filter 
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Design considerations 

 

From the Equation 6.10 we can draw the following filter characteristics, 

 

The cutoff frequency 
RCc

1        (6.11) 

 

The frequency response magnitude, 

 

22)1(

11
|)(|







RC
RC

jH        (6.12) 

 

The Gain in decibels          

 

|)1(|log20|
1

|log20|)(|log20 22  
RCRC

jH     (6.13) 

 

The phase change 

 

)arctan( RC         

 

A plot of the frequency response magnitude and phase change is presented in Figure 6.5 

  

 

Example 6.1 

 

Design a low-pass filter with the cutoff frequency of 1/10002  srad . 

 

 

Solution: 

 

From the Equation 6.10 we have, 

 
1/100021  sradRC   

 

Since we have two element values to choose from, by selecting R=10 K, we get 

 

FC  71057.110000*10002/1   

 

Example 6.2 

 

Define the cutoff frequency for R=10 K and C=0.001 in the Figure 6.14 

 

Solution: 
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From the Equation 6.11, 

 

sec/100
)10001.01010(

1
63 kradc 


   

 

 

Example 6.3 

 

Define the magnitude in dB at frequency 10 KHz, for R=1K and FC 01.0  in the 

Figure 6.1 

 

Solution: 

 

sradf /1022 4   

 

From the Equation 6.11, 

 

sec/10101011 538 radRC    

 

From the Equation 6.12, 

 

97.0
)10()102(

10
|)(|

2524

5







jH

 
 

From the Equation 6.13, 

 

Magnitude in dB dB26.0)97.0log(20   

 

 

Second order low-Pass filter 

 

The roll-off rate could be improved to 40 dB with the implementation of the circuit in 

Figure 6.15 corresponding to the Transfer Function of Equation 6.14.  

 

 

22

1)(
C

H
sH

 
         (6.14) 

 

For a second order Butterworth response 

 

C 2  

 

The loop equation is given as 
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****Insert Figure 6.15 here***** 

Figure 6.15. The frequency and phase response of a second order low-pass active RC 

filter  

 

Source: Operational Amplifiers and Linear Integrated Circuits. 

Robert F. Coughlin, Frederick F. Drisoll. Prentice Hall Publisher 

 

Example 6.4 

 

Design a Butterworth Filter with a -3dB gain at sec/100002 rad  and a gain of 10 at 0 

dB. The circuit of Figure has input resistor R1=1K. 

 

 

Solution: 

 

Equating the Transfer Function of Equation 6.14 and the loop Equation 6.15, we get three 

Equations and 5 unknowns R1, R2, C1. C2 and K, 

 

 

221110)0( CRCRKH          (6.16) 

 

)111(2 22221211 CRKCRCRCRC       (6.17) 

 

2211

2 1 CRCRC           (6.18) 
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Let’s use normalized values of R1=1, C1=1, 1C and solve for the other unknowns 

using Equations 6.16, 6.17 and 6.18. 

 

106.02 Rnormalized  414.92 Cnormalized  10K   

 

The actual values are 

 

KR 11    106106.012 KR  FC 15.1   FC 016.2   

  

 

The band-pass filter 

 

All resonant circuits act as band-pass filters. The circuit of Figure 6.16 corresponds to the 

Transfer Function of the Equation 6.19 that allows a certain band of frequencies to pass 

through while suppressing the rest.  

 

2

000

2

2

)(
)(
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

Qs

sH
sH         (6.19) 

 

There is one frequency (the resonant frequency also called the center frequency) that has 

the maximum output voltage Vmax. The frequency to the left of the center frequency with 

the magnitude 0.707 Vmax is the low cutoff frequency and the frequency to the right with 

0.707Vmax is the high cutoff frequency. The bandwidth is between the low and high cutoff 

points. 

 

The loop equation of the circuit of Figure 6.16 is given as 

 

221122121

2
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1)(

)(
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RCRCRCCCCss

RCs

V

V
sH

I

o




     (6.20) 

 

Equating the parameters of the Equation 6.19 and 6.20 

 

112 1 RCH   

 

The cutoff frequency  

 

2211

2

0 1 RCRC          (6.21) 

 

The bandwidth quality factor 

 

221210 )()( RCCCCQ          (6.22) 
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****Insert Figure 6.16 here***** 

Figure 6.16. The frequency and phase response of a second order band-pass active RC 

filter 

 

Example 6.5: 

 

Design a band-pass filter with Q = 2 and 1/10002  srad . 

 

Solution: 

 

There are four independent values to choose from R1, R2, C1 and C2.  The choice could be 

narrowed down by making C1=C2=C and R1=R2=R and substituting the values into 

Equation 6.21 and 6.22 

 

 222

0 10002)(2   CR         (6.23) 

 

10002)1()( 0   CRQ         (6.24) 

 

Let R = 10K and From Equation 6.23 and 6.24 we get 

 

FCC 6106.121    KRR 1021   

 

 

Single pole high-pass filter 

 

Implementing the Transfer Function of Equation 6.1 gives a single pole high-pass filter. 

Notice, swapping the resistor and capacitor of low-pass filter of Figure 6.14 converts it 

into a high pass filter as shown in Figure 6.17.  

 

The loop Equation is described as, 

 

)1(1

1
)(

RCjV

V
jH

I

O





         (6.25) 
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Design considerations 

 

From the Equation 6.25 we can draw the following filter characteristics, 

 

The cutoff frequency 
RCc

1        (6.26) 

 

The frequency response magnitude, 

 

22)1(

11
|)(|







RC
RC

jH        (6.27) 

 

The Gain in decibels  

 

|)1(|log20|
1

|log20|)(|log20 22  
RCRC

jH     (6.28) 

 

The phase change 

 

)1arctan(
RC

          (6.29) 

 

A plot of the frequency response magnitude and phase change is presented in Figure 6.5 
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****Insert Figure 6.17 here***** 

Figure 6.17. The frequency and phase response of a first order high-pass active RC filter  

 

Source: Operational Amplifiers and Linear Integrated Circuits. 

Robert F. Coughlin, Frederick F. Drisoll. Prentice Hall Publisher 
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Example 6.6 

 

Design a high-pass filter with cutoff frequency of 1/10002  srad  and the transition 

band of 20 dB per decade. 

 

Solution: 

 

The single pole solution of Equation 6.25 satisfies 20 dB requirements. 

 

Substituting the cutoff frequency 1/10002  srad into Equation 6.26, we get 

 

10002)1( RC  

 

If we pick R=1K the capacitor FC 61057.1   

 

Example 6.7 

 

Define the magnitude and phase of the filter output of the Example 6.6 at 100 Hz. 

 

 

The magnitude from the Equation 6.27 

 

999.0
100)10002(

1
10002|)(|

22






jH  

 

The log magnitude from the Equation 6.28 

 

01.0|999.0|log20   

 

The phase from the Equation 6.28 

 

deg001.0)100021002arctan(    

 

Second order High-Pass filter 

 

Implementing the Transfer Function of Equation 6.30 provides a 40 dB roll-off rate.  

 

 

01

2

2)(
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The circuit of Figure 6.18 has the loop Equation matching the Transfer Function 
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There are five unknowns R1, R2, C1, C2 and the gain K with three equations, 

 

The Gain KH   

 

The cutoff frequency 
2121

2 1

CCRR
boc   

 

For a second order Butterworth response 
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****Insert Figure 6.18 here***** 

Figure 6.18. The frequency and phase response of a second order high-pass active RC 

filter  

 

Source: Operational Amplifiers and Linear Integrated Circuits. 

Robert F. Coughlin, Frederick F. Drisoll. Prentice Hall Publisher 

 

 

Example 6.8: 

 

Design a Butterworth Filter with a -3dB gain at sec/100002 rad  and a gain of 10 at 

sec/100002 rad  dB. The circuit of Figure has input resistor R1=1K. 
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Solution: 

 

Equating the Transfer Function of Equation 6.1 and the loop Equation 6.1, we get three 

Equations and 5 unknowns R1, R2, C1. C2 and K. We could normalized values of 

R1=1,C1=1, 1o  and obtain the three unknown values in normalized form, 

 

 

10K , 414.92 C 414.912 R  11 R  11 C   

 

The actual values are 

 

KR 11    11111.012 KR  FC 016.1   FC 15.2   

  

 

Band-stop filter 

 

A band stop response is achieved by canceling the band-pass response with a pure 

resonant response from the numerator polynomial. 

 

The circuit shown in the Figure 6.19 has a gain, 
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****Insert Figure 6.19 here***** 

Figure 6.19. Circuit for a second order band-stop active RC filter 

 

The loop equations are given as 
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The loop equations are given as 

 

  21212221
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There are five design parameters, R1,R2, C1, C2 and the gain K. and three Equations, 

making C1=C2=C and R1=R2=R we can reduce the number of variables to three, and 

solve for them using, 
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Conclusion 
 

The goal in this chapter was to introduce the Transfer Functions of different filter types 

including, the low-pass, high-pass, band-pass and band-stop filters and design the analog 

circuits that match the corresponding Transfer Function of each filter types. 


